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ometime in early 1944 I passed the open door of a small office near my 
own: S. ULAM. He had arrived at Los Alamos only a few days before and 
seemed unoccupied. We introduced ourselves-he a young mathematician, I 
an even younger philosopher, one with mathematical leanings. My field of 

work was the philosophy of mathematics and science. I had listened in on the shop 
talk of the theoretical physicists at Berkeley and knew their style. They thought of 
me for managerial chores in the newly created Los Alarnos laboratory. So I came, 
as an administrative assistant to Robert Oppenheimer. Only later was I given the job 
of writing a wartime history. I was in fact the sole representative of my trade at Los 
Alarnos, and the label "philosopher" usually caught curious attention. But Stan ignored 
it. He had come as a new member of the Theoretical Division, although no one (he 
slyly suggested) knew quite why. I later guessed that he had indeed been invited for 
no particular reason other than the urging of John von Neumann. Stan's version was 
characteristic: "Physicists don't know what to do with mathematicians." 

It was the beginning of a long personal and family friendship. But here I shall 
restrict my recollections to associations of the thinner, more mathematical kind. We 
soon discovered one strong common interest, in the foundations and uses of probability 
theory. Some of Stan's work (Lomnicki and Ulam 1934) had preceded that of Kol- 
mogorov on the measure-theoretic formulation of probability. Mine had been on the 
conceptual foundations, battled over since the time of Bernoulli and Leibnitz and closer 
to the philosopy of physics. 
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0 ne day Stan threw a problem at me, as if to bring our academic discussions back 
to the concerns of a wartime laboratory. In the chain reaction that was to power 

the atomic bomb, some fraction of the neutrons liberated by a fission induce other 
fissions, which in turn liberate more neutrons that induce more fissions, and so on. 
Suppose the number of induced fissions per fission is a random variable that can take 
on the values i = 0,1,2, . . . with probability pi. (That is, po is the probability that 
the neutrons from a single fission induce no further fissions, p\ is the probability that 
they induce one further fission, and so on.) What then is the probability distribution 
of the number of fissions occurring in the nth "generation" of such a process started 
by a single fission? Although we didn't know it at the time, the same problem-stated 
differently-had been solved long before. One earlier version had been posed in terms 
of the proliferation of a family name through male descendants. Assume that each 
male Jones produces i male offspring with probability pi, i = 0, 1 ,2 ,  . . . (and that this 
probability does not vary from one generation to another). What then is the probability 
that a given Jones has k males in the nth generation of his descendants? 

I spent several evenings on the problem. By persistence rather than insight I 
found the very simple solution (Hawkins and Ulam 1944). A lot of algebraic solvent 
evaporated and left behind an unexpected little crystal of a formula, the sort of outcome 
that makes you ask why it hadn't been obvious all along. 

Let f (x) be the Laplace generating function of the sequence of probabilities 
{po,pl,p2,. . .}. (That is, let f (x) be the function to which the infinite series po + 
plx + p2x2 + - - - converges.) Then the probability that Jones has k grandsons (or k 
second-generation male descendants) is the coefficient of xk when f2 (x)  = f (Ax)) is 
expanded in powers of x. And in general the probability that Jones has k n th-generation 
male descendants is the coefficient of xk when fn (x) =f{fn - ( x ) )  is similarly expanded. 
Thus, to the biological process, that of reproduction, there corresponds an algebraic one, 
that of iteration, in which the argument of a function is replaced by the function itself. 
I'll mention other related results and further applications later, but this was the essence 
of our first venture into what was to develop into the theory of branching (we said 
"multiplicative") processes.* 

Stan was delighted with my solution, and I, the rank amateur, was flattered. He 
already knew quite a lot about the deceptively simple operation of iteratively substituting 
a function for its own argument, and I got a lesson or two. In the course of these 
discussions, we got on to such topics as space-filling curves, turbulence, and what have 
recently come to be called catastrophes, in which deterministic laws lead rigorously 
to results we can only describe as chaotic. A good many years later when we were 
reminiscing about all of this, I complained that we had almost been pioneers in such 
matters. Why hadn't we pursued them? Stan's reply: "It's because there are so many 
of them guys and so few of us!" 

*I should also mention a prior Los Alamos paper by S. Frankel, which may lie buried in the 1943 series 
of Los Alamos reports. Frankel had thought in terms of a continuous time parameter instead of discrete 
generations. That approach leads to a one- parameter family of generating functions embedding our fn(.x). 
The problem actually has an even earlier origin. It was discussed by Darwin's cousin Francis Galton in 
1889 and then by A. Lotka in 1939. Later, in 1945, Erwin Schrodinger addressed the problem, and I recall 
seeing the title of a relevant Russian paper (obviously declassified!) of about the same date. A section of 
Feller's classic text on probability theory (Feller 1968) is devoted to branching processes; a full develop- 
ment is that of T. E. Harris (Harris 1963). 
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A Biological Chain Reaction 
Lotka showed that the pro 

was described by the seq 
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I know very little in detail of the wide range of Stan's work and his repertoire. In 
this memoir I shall confine myself to matters we corresponded about or worked on 

jointly. I do this partly because some of these may not be otherwise known and partly 
because they affected my own mathematical avocation in a way that throws some light 
on the character of Stan Ulam, teacher. I never sat in on any of his courses, to be 
sure, though I sometimes heard him lecture. The teaching I shall speak of is that I 
occasionally received, over many years, one-to-one. In talking about all this I shall 
refer to some work of mine that shows the nature of the Ulam influence; it is minor 
work but still a mirror of our associations. And I enjoy bringing these pieces together 
for the first time. 

Stan was indeed a superb teacher, of a kind not very common. One part of 
his secret was a quite extraordinary talent for turning forbidding topics into attractive 
problems, attractive because they seemed promising, seemed to open up some larger 
area. Another part is a quality I am tempted to describe as meritorious laziness. Though 
Stan could, on occasion, himself engage in intense and concentrated work, as a teacher 
he would give you the challenge and then-let you do the work. I remember feeling a 
bit resentful. I did all the work on that first little paper, and he could have added more! 
But what he really added was to my confidence. For Stan no ego was invested. 

Later, when I was at the University of Colorado, Stan and I both did some further 
work on branching processes. He, with C. J. Everett, had generalized the whole 

scheme by including "particles" of different types (Everett and Ulam 1948). This 
generalization, in its physical applications, allowed offspring and progenitors to differ 
from each other, for example, in their spatial or dynamical, and hence also in their 
reproductive, characteristics. 

My own related work was inspired partly by a conversation we had about one of the 
great and vital mysteries of mathematics. The Greeks got on to it, long before Euclid, 
in the discovery that geometrical facts could be represented arithmetically, while those 
of arithmetic could be seen in the mirror of geometry. In our own day the pendulum has 
swung far toward the arithmetical, whether analytic or digital, side. Rather typically 
Stan took the "wrong" side, that of geometry. "Draw a curve," he said, "of a nice 
simple function. Now draw another curve parallel to it. The relation is very simple to 
see and understand, but algebraically it can be quite messy." How is it possible that 
relationships that are so complicated in one domain can be mapped into another where 
they appear so simple, or vice versa? 

The generating-function transformation I had used in that first problem of ours is 
an elegant elementary example; it belongs to a wider family with many applications in 
applied mathematics, including probability theory. We had extended its use a bit, and it 
was Stan's challenge to extend it further, as he did in the work with Everett. To me the 
challenge was to explore the relevance of this transformation to other operations of a 
stochastic nature. Long known of course is the fact that addition of independent random 
variables corresponds to multiplication of their generating functions. What could one 
say about other arithmetical operations-division, say, or the logarithm-when random 
variables take the place of simple numbers? 

Consider the following example. Physics students learn that the number of alpha 
particles emitted per unit time by a bit of uranium is a random variable (call it 
F) described by the Poisson distribution, whose Laplace generating function f ( x )  is 
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, - \ ( l  - x )  , where A is a decay constant characteristic of uranium. The time between 
emission of successive alpha particles is also a random variable (call it G); it is described 
by the exponential distribution, whose generating function g(x) is A fm e h x u d u  = 
A/(A - 1n.x). Now F and G are reciprocals of each other. What then is the relation 
between f and g , the generating functions of their probability distributions? The answer 
is that they satisfy the remarkably simple relation 

where f and denote the inverses of f and g: f ' ( x )  = (lnx + A)/A and 
; e A < l - l / ~ )  

One can show that this functional relation holds quite generally. Whatever the 
probability distribution may be for A per unit B, its generating function and that of the 
distribution for the reciprocal measure B per unit A will satisfy the above identity. (A 
mathematical nicety is that the inverses of such functions always exist.) Thus one can 
easily calculate means, variances, and higher moments of one distribution from those 
of the other. 

A related topic is the "random logarithm": Find the probability distribution, for 
example, of the time required for a chain reaction to produce a given population size. 
I was in fact looking for some old notes on these matters, which Stan had asked about, 
when I learned of his death. 

A fter the war I was absented from weaponeering-first from choice and then by the 
F.B.I. I became politically opposed to the arms race that supported it, but not to 

wartime friends. Over the following years Stan and I corresponded or talked about a 
good many different topics, and again it was he who got me thinking about some of 
these. As I write now, I realize they all concerned iterative processes, deterministic or 
stochastic or mixed, that seemed to lie beyond the range of "standard methods." So 
although it might seem a bit of a jump to go from chain reactions to prime numbers, both 
fitted that general category. There is an iterative definition of the prime numbers, the 
sieve of Eratosthenes. The process is completely deterministic, but the way the primes 
are scattered among the other numbers has a very chancy look that has stimulated 
generations-centuries-of investigation. 

First there came from Stan some rolls of print-out: very long lists of primes, of 
twin primes, of successive differences between them, and so forth. All these of course 
were computer-generated. Others may have computed even longer lists; Stan was one 
of the first to do so. But soon the pattern changed. The theory of primes is a high- 
order specialty for number theorists, and a happy hunting ground for amateurs like me. 
Stan was neither, or both. I think he may have been the first to think of the sieve of 
Eratosthenes as merely one among many sorts of iterative processes whose products 
lie beyond the range of standard methods. He thought of a good many other ways of 
generating number sequences that were more or less prime-like in their frequency and 
distribution. It was a flanking maneuver: If you can't solve the original problem, think 
of others that resemble it, and may be easier. Some of Stan's schemes seemed to me 
far-fetched, and I said so. His reply: "Yes, but I am the village idiot!" 

Indeed, I think that Stan often did not care whether he got to the essence of a 

SIEVE OF ERATOSTHENES 
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SOME RANDOM NUMBERS 

The random numbers below are a small frac- 
tion of the 10,000 generated in the early 1900s 
by L. H. C. Tippett, then a member of the Bio- 
metric Laboratory at University College, Lon- 
don. Tippett generated the numbers, which 
were used in statistical sampling procedures, 
by selectfng 40,000 single digits from census 
reports and combining them by fours. The 
coliection of numbers was originally handwrlt- 
ten; the excerpt here is reprinted, with per- 
mission, from a version published in 1959 
by Cambridge University Press (Random Sam- 
piing Numbers, Tracts for Computers, edited 
by E, S, Pearson, Number 15). 

particular problem. There are many things you can do with problems besides solving 
them. First you must define them, pose them. But then of course you can also refine 
them, depose them, or repose them, even dissolve them! A given problem may send 
you looking for analogies, and some of these may lead you astray, suggesting new and 
different problems, related or not to the original. Ends and means can get reversed. 
You had a goal, but the means you found didn't lead to it, so you found a new goal 
they did lead to. It's called play. Cyril Smith has argued persuasively, and with good 
historical evidence, that play, not utility, has long been the mother of invention (Smith 
1981). Utility has been only the nursemaid. Creative mathematicians play a lot; around 
any problem really interesting they develop a whole cluster of analogies, of playthings. 

One of Stan's playthings, his "lucky numbers," got considerable attention (Gar- 
diner, Lazarus, Metropolis, and Ulam 1956). These numbers, which are generated by 
a sieve quite like that for the primes, have no particular arithmetical properties; they 
are just lucky to survive the sieving. A number of us got involved in studying their 
long-run distribution, which turned out to very close to that of the primes (Hawkins 
and Briggs 1957). 

It is here I should mention an important one of Stan's contributions in the general 
grouping of nonstandard iterative processes. There was nothing lazy about his pursuit 
of a really good idea. "Pursuit" is probably the wrong word; it implies he already 
had the idea on the run. In the beginning it maybe was more like a roundup, a 
nudging together of possible example after possible example. I recall his ruminations 
about the Monte Carlo method in 1944, when already he was talking about it. More 
than fifty years ago there began to appear small compilations of random numbers. 
I remember the incredulity of a good physicist friend when I showed him such a 
listing. He knew Jahnke-Emde, of course, an old book of tables of almost every then- 
standard function. But random numbers? Statisticians were the wave of the future 
in those days. They alone used random numbers-for honest sampling procedures- 
even though nobody quite knew what "random" meant. But Stan foresaw that when 
high-speed computers should come along, they might well be used to imitate various 
deterministic or stochastic processes. Stan's phrase was "playing the game." The 
question was how to provide a computer with random numbers. I favored the built-in 
alpha counter, but that violated the sensibilities of mathematicians. There is indeed 
a grey area between chance and determinism, occupied by pseudo-random sequences. 
Even that early Stan was exploring it. 

I think the most original part of Stan's early thinking about such matters was 
the idea that you could transform the equations describing a completely deterministic 
process into a mathematical form that also describes a stochastic one, and then you could 
get approximate solutions by playing the game repeatedly on a high-speed computer. 
But Monte Carlo is not my topic, except again as it affects my picture of Stan Ulam, 
teacher. 

One of the topics we got on to later was a Monte Carlo approach to the theory 
of prime numbers. Pick a number at random from the neighborhood of some number 
N .  The probability of picking a prime there is about &, their approximate frequency. 
Why not reverse the process and produce a random sequence of numbers that mimic 
the primes? Try out each number N = 2,3,4,5,. . . against a game of chance for which 
the probability of "winning" is &, and select it for the sequence only if it wins. The 

Los Alamos Science Special Issue 1987 



The Spirit of Play 

properties of such a sequence, or rather of many such sequences examined together, 
might throw light on some aspects of prime-number theory. The statistician Harald 
Cramer, it turned out, had already written about that. My own next bright idea was 
to turn the sieve of Eratosthenes itself into a Monte Carlo device. Drop out half the 
numbers beyond 2, namely those that "lose" a game of chance for which the probability 
of losing is i. Let N be the first survivor. Now drop out Ã of the numbers beyond N,  
those that lose another game of chance for which the probability of losing is 6. Keep 
repeating the process indefinitely, each time basing the sieving on the first survivor. 
One can play this game on a computer, which I did. But the theory of these "random 
primes" turned out to be not too difficult (Hawkins 1974), and it showed that the prime- 
number sequence could be regarded as one of an infinite family of sequences very much 
like it in their average properties. It supports some familiar conjectures about the primes 
and suggest others. The best result, I think, is that the famous and unproved Riemann 
hypothesis turns out to be true of "almost all" sequences generated by the random sieve. 
This hypothesis is a more recondite example of the kind of transformation I have talked 
about. It concerns the zeros of a certain function in the complex domain and, if true, 
implies a whole batch of propositions in number theory. Many of these can be proved 
independently, and none have been disproved. But some seem to be beyond the range 
of simple methods. That the Riemann hypothesis can be shown to be true of the random 
primes, and thus of almost all prime-like sequences, surely makes even more unlikely 
the possibility that the primes themselves should prove an exception. 

H ere, finally, I should mention another component of Stan's work, one that I can also 
trace back to early Los Alarnos days. It grew later to very substantial proportions. 

One beginning I recall was to discuss a stochastic branching process that requires 
the "mating" of two "particles" from one generation in order to produce "offspring" 
for the next: sexual reproduction. Here the branching goes in both time directions, 
backward genealogically and forward by descent. The theory of this branching is 
essentially nonlinear. "Sex," Stan said, "is quadratic!" I had indeed examined one 
kind of nonlinear stochastic process, a chain reaction in which depletion of fuel, or 
of nutrient in the case of bacterial reproduction, is a factor. This led to a stochastic 
version of the well-known logistic curve of growth, which at first rises exponentially 
and then tapers off to a zero or negative slope. My work had a certain mathematical 
interest because it showed that the statistical fluctuations in such a nonlinear process 
can also change its average character; they don't "average out." 

Such work as this might have stayed in abeyance except for Stan's development 
of other and much broader interests, namely in mathematical models of growth and 
reproduction. I remember approaching him with my own new-found interest in Claude 
Shannon's work on information theory and in the discovery of Watson and Crick. I 
wanted to define a measure of biological complexity, or organization, in information- 
theory terms, and we were immediately at loggerheads. He wanted to insist that very 
simple instructions could produce very complex patterns and I that such simplicity 
would nevertheless limit the variety of such patterns. Each of us was defending a 
different meaning of "complex." I already knew of his work (or play) with computer- 
generated growth patterns (Ulam 1962) but hadn't realized fully the range of ideas he 
was bent on exploring. Once more it was that flanking move. The genetic instruction 

"SEX," Stan said, "IS QUADRATIC" 

In this quote Stan was expressing a broad 
mathematical view of sex as a branching pro- 
cess in which some interaction, or "mating," 
between "male" and "female" members of a 
species is required for reproduction. An ex- 
ample is the deadly mating of male and female 
black widow spiders. 

It 

Latrodectus mactans 

Oddly enough, the animal kingdom includes 
some species, namely, a few of the tapeworms, 
that reproduce without any mating. 

The demography of a sexually reproducing 
species depends on (among other factors) a 
product of the male and female populations- 
hence the adjective"quadratic." For mathe- 
matical simplicity mating is often assumed to 
be random, as it is for the ornamental ginkgo, 
or maidenhair, tree. 

Ginkgo 
biloba 
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of biological growth and reproduction is a vast and still mostly uncharted domain for
investigation. But once more the “village idiot” could invent all kinds of very simple
processes bordering that domain. The idea of “growing” elaborate dendritic patterns,
“organisms,” by the endless repetition of a few simple “genetic” instructions, applied
in each cycle to the results of previous cycles, was another in the category of iterative
processes that lay beyond the range of standard methods. It later became the basis for
the famous “game of life’ ’—was Stan its first inventor? I don’t know. I connect this
work also with Stan’s important work on the nature of and approach to equilibrium
in even slightly nonlinear iterative processes. In the years following he became quite
deeply involved in more realistic problems of genetics, but I mostly lost touch.

One of these problems, now well known and used in molecular genetics, came from
Stan’s deep familiarity with measure theory. Suppose a deck of cards can be shuffled
only by several allowable operations. Knowing these and the end result of a shuffling,
find the smallest number of allowable operations that accomplishes the given result, and
call it the “distance” between the two orderings. Two decks of cards, or two nucleic acid
strands, might appear very different in an item-by-item comparison yet be by shuffling
history very close. Stan was a visiting professor at the University of Colorado’s medical
school when he worked on this, and I have a nice story from Theodore Puck. Stan got
so interested in the mathematics (now not an iterative process) that he seemed to be
ignoring the relevant biology. Reproached, he mended his ways. But he began his final
talk on the subject with an imperative: “Ask not what mathematics can do for biology;
ask rather what biology can do for mathematics!”

In the sixties and seventies I became more and more concerned with practical and
theoretical work relating to elementary-school education in mathematics and science,

to “school-doctoring.” Toward this new career of mine Stan was-tolerant. We enjoyed
good conversations but little time for shared work. It was only last year that I was
suddenly recalled to our earliest association, catching up on some work he had done
in population genetics and related matters. With characteristic initial disregard for
humdrum scholarship, he had reinvented and extended some of the existing theory,
developed first by R. A. Fisher and Sewall Wright.

I had known generally about this work but had missed one small paper, one in
which he and Jan Mycielski formulated the basic theory of stochastic pairing, the
branching process involved in sexual reproduction (Mycielski and Ulam 1969). Its
main focus was not, however, on the fluctuational aspect of the process but on the
average distribution and evolution of mutations within a species. The paper set forth
three measures of the “distance” between two individuals. I shall mention only one
of these, proposed by Mycielski. It is simply the sum, over the present generation
and all past generations, of symmetric differences in genealogy; that is, the number of
entries present in one family tree and absent from the other, plus the number present
in the other and absent from the one. Since sexual reproduction is already a stochastic
process, this measure is genetically crude (for example, it ignores sibling diversity).
But it is surely a plausible first (or if you wish, zeroth) approximation—a measure of
purely genealogical, not yet of genetic, distance.

Stan had done (as he often had for other problems) some Monte Carlo simulations
assuming a constant population size of 2N, random pairing between the N males and

46 Los Alamos Science Special Issue 1987



The Spirit of Play

Los Alamos Science Special Issue 1987 47



The Spirit of Play 

GROWTH CURVE FOR EXPECTED 
NUMBER OF FEMALE ANCESTORS 
n GENERATIONS AGO 

As n increases, the expected number of female 
ancestors departs more and more from 2" be- 
cause of the increase in the number of shared 
female ancestors. 

in a total of ( i )  (y-^c} ways. To obtain q k ,  this number is then divided by (t), the 
total number of ways of choosing the s-element set. (I should add that if the words 
"mother" and "father" are interchanged, along with r and s ,  the answer is the same; 
though the resulting formula for q k  will look different, it is not different in value.) 

Using Eq. 1, we can now deduce the probability pn+l ,? that, (n  + 1) generations 
back, you yourself have t = r +s - k female ancestors. Let pn ,r and pn ,s be the respective 
probabilities that, among that generation, your mother has r female ancestors and that 
your father has s.  Since various values for r ,  s ,  and k = r + s - t can yield a particular 
t value, pn+l t  is a sum over those variables: 

The Laplace generating function for this sequence of probabilities, call it fn+\(x), is 
therefore given by 

Equation 2 does not lend itself to derivation of an elegant recurrence relation between 
fn+1 ( x )  and fn (x ) ,  but it does provide such a relation between An+1 and An, where An is 
the expected, or average, number of female ancestors n generations back. This relation 

in which 

(Interestingly enough, the right side of Eq. 4 is also the answer to a much simpler 
problem: If 2" objects are distributed randomly among N boxes, what is the expected 
number of non-empty boxes?) If we identify the term A: /N as the average number of 
shared female ancestors n generations back, then Eq. 4 defines just the logistic curve 
Stan and I had seen to describe the expected loss of ancestry; the difference between 
2" and An (the average number of your female ancestors n generations back) is just 
A:_ / N  (the average number of female ancestors among that generation shared by your 
parents). 

Now Mycielski's definition of the expected genealogical distance between two 
randomly chosen individuals of the same generation can be written xr 2(An - A^/N). 
We can evaluate this distance by using Eqs. 3 and 4: 

which, when doubled to include male ancestors, is just the result obtained by Kahane 
and Man-. 
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A fter I had "noticed" these simple relations (with Jan Mycielski's forbearance), I 
went to some of the literature of mathematical demography and population genetics 

and learned, of course, that it dealt with much more recondite problems, which I was 
loth to become involved in. Not equipped to make judgements, I nevertheless wondered 
why it seemed to skip over these simple zeroth approximations. And then I realized 
why I wished to talk about all this in a personal memoir about Stan Ulam. He, the 
"village idiot," the one who had the necessary "don't-know-how," did not skip over 
them. It was his style to value the art of successive approximation, of evading the 
big complexities until he was ready for them, the art sometimes called common sense. 
Many of his computer simulations were rough sketches of this kind yet could lead into 
deep water, such as his work on iterated nonlinear transformations. [See "Iteration of 
Maps, Strange Attractors, and Number Theory-An Ulamian Potpourri."] 

With a few further modifications this mathematical genealogy begins to resemble 
a real biological story, possibly our own, and with all kinds of further questions in 
tow. I bring a closure to this writing by mentioning two such modifications, neither of 
which is so complex as to obscure the essential simplicity. The first recapitulates our 
early work on branching processes (Hawkins and Ularn 1944). Such processes appear 
within the scheme of sexual reproduction as soon as we shift from pure genealogy to 
genetics and to an interest in evolution. I shall describe briefly the simplest example. 
The second modification is necessary to give context for the first. It generalizes the 
original scheme, moving it away from the unrealistic assumption of random pairing 
toward a pattern of "assortative" mating. This move is curiously parallel to the later 
work of Everett and Ulam on branching processes in several dimensions (Everett and 
Ulam 1948). 

Genetically considered, sexual reproduction is not only quadratic but also bi- 
quadratic: Each partner contributes to an offspring half of a diploid genome. But 
once inherited, the genetic makeup of the offspring remains constant, apart from mu- 
tations. Consider then the fate, within our model, of any individual genetic token, 
taken to be the only one of its kind. It will or will not be transmitted to an offspring 
with probability i. So the probability of its transmission to 0, 1, or 2 offspring is the 
coefficient of the corresponding power of x in the generating function g(x) = (i + \ x ) ~ .  
Its appearance in subsequent generations is described by a simple chain reaction with 
gn(x) = g (gn-i(x)), one just at the level of transition from a subcritical to a super- 
critical condition. In any later generation the expected number of descendants with the 
token is a constant, namely 1. The probability that the token eventually disappears is 
1, but its expected lifetime is infinite. The model itself forbids any evolutionary con- 
sequences. All of the model's essential properties are preserved, however, by allowing 
a variation of family size, insisting only on a mean value of 2. (Indeed even a slow 
exponential rate of population growth leaves essentials unchanged.) Then inheritance 
of any given "bad" gene will be decreased, and that token will have a finite expected 
lifetime. For a "good" gene the chain goes supercritical; with probability greater than 
1 the number of descendants with the "good" gene will grow exponentially with time 
and eventually dominate the population. 

In such a way we can mimic stochastic adaptation. That is a necessary condition 
for evolution, but not sufficient. Diveregent adaptation is also necessary. If different 
environmental conditions face two subpopulations, "good" genetic changes in one might 
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be "bad" in the other. If the two are long separated, genealogical distances become 
very great, and the original gene pool may finally fission into those of separate species. 

For such reasons we may consider a pattern of assortative mating that involves 
random pairing within subpopulations and rates of migration between them that decrease 
with some measure of distance. Successive generations in one subpopulation will 
gradually acquire more ancestors in the others. In the long run complete mixing 
will occur, but genealogical distances can now spread over a wide range. If the rate 
of mutation is assumed to be low but constant, genetic distances will increase with 
genealogical. 

All this seemed at first quite difficult to mathematize, but surprisingly it is not. 
Shared ancestries and genealogical distances can be expressed in closed algebraic forms 
that depend only on the rates of diffusion between the subpopulations and their sizes. 
I leave the subject at this point. Stan's work in biomathematics went further in other 
areas, but this extension of early work I think would have pleased him. 

I mentioned above that Stan was a bit standoffish about my involvement in work 
relating to the education of children. I was playing with them instead of him, my 

mathematical mentor! But I heartily forgive him. Some of what I had learned from him, 
that very spirit of play, I could take to the struggles for better science and mathematics 
teaching in the schools. Children don't have to be taught how to engage in serious play, 
usually, but teachers and other "educators" frequently do. They too often have lost the 
art, overwhelmed by mistaken notions of some puritan or utilitarian origin. Stan never 
lost it. 

David Hawkins earned his academic degrees in phi- 
losophy: an A.B. and M.A. from Stanford Univer- 
sity and a Ph.D. from the University of California, 
Berkeley. (The title of his doctoral dissertation, 
'A Causal Interpretation of Probability," reflects a 

combined interest in the humanities and science that 
continues to this day.) In 1943, after short teaching 
stints at Stanford and Berkeley, he joined the newly 
created Los Alamos laboratory, serving first as ad- 
ministrative aide to J. Robert Oppenheimer and later 
as historian. A year at George Washington Univer- 
sity was followed in 1947 by a move, which proved 
permanent, to the University of Colorado, Boulder. 
He is now a Distinguished Professor Emeritus at that 
institution. Hawkiis has devoted much of his pro- 
fessional life to projects concerning the teaching of 
mathematics and science. In 1970 he helped create 
the University of Colorado's Mountain View Cen- 
ter for Environmental Education, an advisory center 
for preschool and elementary teachers, and is still a 
participant in its activities. He has enjoyed leaves 
of absence at several colleges and universities in the 
United States and abroad and has been honored with 
a fellowship at the Institute for Advanced Study, a 
MacArthur Fellowship, membership in the Coun- 
cil of the Srnithsonian Institution, and chairmanship 
of the Colorado Humanities Program. In addition to 
numerous journal articles, he has written four books: 
Science and the Creative Spirit: Essays on Hurnan- 
istic Aspects of Science (Harcourt Brown, editor; 
1958), The Language of Nature: An Essay in the 
Philosophy of Science (1964), The Informed Vision: 
Essays on Learning and Human Nature (1 974), and 
The Science and Ethics of Equality (1977). 

Los Alamos Science Special Issue 1987 



The Spirit of Play 

Further Reading 

David Hawkins. 1947. Manhattan District History: Project Y, The Los Alarnos Project. Los Alamos 
Scientific Laboratory report LAMS-2532, vol. 1. Also in Project Y: The Los Alamos Story. The History of 
Modem Physics, 1800- 1950, vol. 2. Los Angeles: Tomash Publishers, 1983. 

2. Lornnicki and S. Ularn. 1934. Sur la thkorie de la mesure dans les espaces combinatoires et son 
application au calcul des probabilitis. I. Variables indipendantes. Fundamenta Mathematicae 23: 237-278. 
Also in Stanislaw Ulam: Sets, Numbers, and Universes, edited by W. A. Beyer, J. Mycielski, and G.-C. Rota. 
Cambridge, Massachusetts: The MIT Press, 1974. 

D. Hawkins and S. Ulam. 1944. Theory of multiplicative processes: Part 1. Los Alamos Scientific Laboratory 
report LA- 17 1. 

William Feller. 1968. An Introduction to Probability Theory and Its Applications. Third edition. New York: 
John Wiley & Sons, Inc. 

Theodore E. Harris. 1963. The Theory of Branching Processes. Die Grundlehren der Mathematischen 
Wissenschaften in Einzeldarstellungen, vol. 1 19. Berlin: Springer-Verlag. 

C. J. Everett and S. Ulam, 1948. Multiplicative systems, I. Proceedings of the National Academy of Sciences 
34: 403405. Also in Stanislaw Ulam: Sets, Numbers, and Universes, edited by W. A. Beyer, J. Mycielski, 
and G.-C. Rota. Cambridge, Massachusetts: The MIT Press, 1974. 

Cyril S. Smith. 1981. A Search for Structure: Selected Essays on Science, Art, and History. Cambridge, 
Massachusetts: The MIT Press. 

Vema Gardiner, R. Lazarus, N. Metropolis, and S. Ulam. 1956. On certain sequences of integers defined by 
sieves. Mathematics Magazine 29: 117-122. Also in Stanislaw Ulam: Sets, Numbers, and Universes, edited 
by W .  A. Beyer, J. Mycielski, and G.-C. Rota. Cambridge, Massachusetts: The MIT Press, 1974. 

D. Hawkins and W. E. Briggs. 1957. The lucky number theorem. Mathematics Magazine 3 1 : 277-280. 

D. Hawkins. 1974. Random sieves: Part 11. Journal of Number Theory 6(3): 192-200. 

S. Ulam. 1962. On some mathematical problems connected with patterns of growth of figures. In 
Proceedings of the Symposium on Mathematical Problems in the Biological Sciences, pp. 2 15-224. American 
Mathematical Society Symposia in Applied Mathematics, vol. 14. Providence, Rhode Island: American 
Mathematical Society. 

Jan Mycielski and S. M. Ulam. 1969. On the pairing process and the notion of genealogical distance. 
Journal of Combinatorial Theory 6: 227-234. Also in Stanislaw Ulam: Sets, Numbers, and Universes, edited 
by W .  A. Beyer, J. Mycielski, and G.-C. Rota. Cambridge, Massachusetts: The MIT Press, 1974. 

Stanislaw M. Ulam. 1986. Science, Computers, and People: From the Tree of Mathematics. Edited by Mark 
C. Reynolds and Gian-Carlo Rota. Boston: Birkhauser. This posthumous work of Stan's, which I received 
after writing this memoir, contains references to some of the matters I have discussed, notably in the essays 
on biomathematical topics. 

Los Alarnos Science Special Issue 1987 


	6. spirit of play-1
	6. spirit of play-2
	6. spirit of play-3
	6. spirit of play-4
	6. spirit of play-5
	6. spirit of play-6
	6. spirit of play-7
	6. spirit of play-8
	6. spirit of play-9
	6. spirit of play-10
	6. spirit of play-11

